
REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collBCtion of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and
reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for
Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY {Leave blank) 2. REPORT DATE

 5 Sep 97

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

A COMPUTERIZED APPROACH TO A MULTIVARIABLE, CONSTRAINED,
NONLINEAR OPTIMIZATION BLENDING PROBLEM USING A MONTE
CARLO SIMULATION
6. AUTHOR(S)

Michael A. Martinez

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Auburn University

Auburn, Alabama

. PERFORMING ORGANIZATION
REPORT NUMBER

97-116

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

THE DEPARTMENT OF THE AIR FORCE
AFIT/CIA
2950 P STREET
WPAFB OH 45433-7765

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

PffiffaiaUTIOg? STATEMENT K

AppzoTftO tor puDÜc release}
TVimitw. unimutuxi n

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS 15. NUMBER OF PAGES

19
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF ABSTRACT

BTIC QUALITY EXPECTED S

Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

r

A COMPUTERIZED APPROACH TO A MULTIVARIABLE,

CONSTRAINED, NONLINEAR OPTIMIZATION BLENDING

PROBLEM USING A MONTE CARLO SIMULATION

Michael A. Martinez

A Design Project

Submitted to the

Industrial and Systems Engineering Faculty

of Auburn University in

Partial Fulfillment of the

Requirements for the

Master's Degree of

Industrial and Systems Engineering

Auburn, Alabama

July 23,1997

DTIG QUALITY INSPECTED 9

19970912 049

TABLE OF CONTENTS

1

2

3

4

Table of Contents

Abstract

Project Proposal

Problem Origin

Problem Statement "

Literature Search 6

Possible Solution Algorithms 7

Analytical (Calculus) Method 8

Gradient Search 8

Failure of Calculus - Direct Search 9

Exhaustive Search 9

Iterative Search (Strategic Guessing) 10

Iterative Search (Monte Carlo Simulation) 12

Monte Carlo Search Computer Program 16

Visual Basic 4.0 17

Program Validation 18

Literature 1°

ABSTRACT

This design project dealt with a blending problem in the format of a multivariable,

constrained, nonlinear optimization problem, where a typical application of this

problem may be an incinerator that burns waste. The incinerator accepts a blend of

several sources, each of which has particular characteristics in terms of thermal output.

Should the different sources be inappropriately blended, it could result in a safety

hazard for the entire incinerator. The problem is to determine the appropriate

proportions so that the maximum value of thermal output for the blend is minimized.

The maximum value will be approximated by the mean of the blend plus a selected

number standard deviations. The first phase of the project was a brief study of similar

blending problems by searching relevant literature. It was found that very little has

been done on this problem in terms of computer implementation for industry.

Secondly, various possible methods for solving the blending problem were

considered. Among these methods were classical calculus, gradient searches,

exhaustive searches, and iterative direct searching. An extension of an iterative direct

search is a Monte Carlo simulation, where a statistical approach is taken. The Monte

Carlo search method is based on the theory that the optimization problem has a

distribution of answers and that a random sample of those answers will yield an

answer in the lower tail to within a certain degree of "accuracy." Then, the feasible

region of answers will be halved and another random sample of possible answers will

be taken. The search proceeds in this manner, taking random samples from an ever-

decreasing region of feasible answers. The method focuses on the optimal answer.

The third aspect of the project was implementing the Monte Carlo method in

computer code. The program was written in Visual Basic 4.0 for Windows in order to

achieve user-friendliness and a graphical user interface. The program contains both an

optimization function and a "What-if" analysis. A "User's Manual" was also

documented to assist the user.

M.I.S.E. Design Project Proposal

Essentially, my design project will consist of a blending problem. A typical
application of this problem to the industrial domain would be an incinerator that burns
waste. The incinerator accepts material from several sources, each of which has
particular characteristics in terms of thermal output. The thermal output of each source
is assumed to be normally distributed, having its own mean and standard deviation.
The sources will be blended to create the final burning material. Should the different
sources be inappropriately blended, it could result in a safety hazard for the entire
incinerator. The problem is to determine the appropriate proportions so that the
maximum value of thermal output for the blend is minimized. The maximum value
will be approximated by the mean of the blend added to a selected number standard
deviations. For example, an addition of three standard deviations results in a 0.00135
probability that the maximum value will be exceeded. As the number of sources
increases, the problem quickly becomes more complex. The goal of the project is to
produce a working model computer program that will allow user interface so that it
will calculate the appropriate proportions of each source to produce an optimally safe
blend for the incinerator. Additionally, the program will allow the user to play "what-
if" games in order to test different blending situations. This feature will be
advantageous when the blending has constraints.

The first phase of my project will be a brief study of similar blending problems. In
talking with my advisor, Dr. Hool, it was discovered that very little has been done on
this problem in terms of computer implementation for industry. This phase is an
attempt to determine what is currently available in this field.

Secondly, a mathematical analysis will be done on the problem to determine the best
solutions to the problems, as the number of sources increases. An initial hypothesis is
that search methods for optimization will need to be utilized since a closed-form
solution is impossible and an exhaustive computer search will be impractical.
Additionally, the general program requirements and options will be determined.

The third aspect of the project will be implementing the working solution in
computer code. The initial proposal is to write the program in Visual Basic in order to
achieve user-friendliness and graphical user interface. After the program is
flowcharted, the coding will be done. Naturally, testing and de-bugging will also be
required. Optionally, a short "User's Guide" will be documented.

Finally, the write-up will be completed in order to ensure thorough documentation.
As of now, the schedule for completion date is June 10, 1997. This will allow almost
three months for the review, oral examination, processing of results, and payment of
the graduation fee well before the deadline two-weeks prior to graduation.

PROBLEM ORIGIN

This problem originated from a real-world problem involving hazardous waste

disposal through burning of hazardous waste material in an incinerator. Various

sources of hazardous waste material are inputs to the incinerator, and the sources are

blended into a mixture prior to insertion into the incinerator. Each source contains a

distribution of Btu (British thermal unit) content (i.e. the Btu content is not a single

value for a source). The incinerator cannot be safely operated if the maximum Btu of a

blended input exceeds 800 Btu (the "safe limit"). The problem is to determine how to

blend the sources in order to avoid burning material that has a maximum Btu value

exceeding the "safe limit" of the incinerator. Specifically, the problem is to determine

the proportion of each source to put into a blend so that there is a small probability (e.g.

0.001) that the maximum Btu will exceed the "safe limit."

The blend can be modeled as a linear combination of source Btu's. Each source has

its own distribution of Btu content. The mean Btu of source i, i = 1, 2, ... , n, is |i,, and

the variance of Btu content of source i is a,2. If the proportion of source i that is blended

into the final mix is h , then the Btu content of the blend is a linear combination, B, of

the sources. If X; is the Btu content of source i, where X; is a random variable, then

i

and B has a mean

i

and a variance

<^E*fo2

if the sources are independent. The independence assumption is easily met in the

problem. If the Btu content of each source is normally distributed, then B is also

normally distributed. If not all of the sources have normally distributed Btu's, then B

may still be approximately normally distributed if enough sources are blended (as a

result of the Central Limit Theorem).

If B can be assumed to be at least approximately normally distributed, then for any

arbitrarily selected probability, p, where p will be small, a corresponding "maximum"

value for B, defined as MP, can be written as

where ZP = standardized normal distribution value corresponding to the

probability p.

MP is the (lOO)pth percentile of B, and is the value of B beyond which only (100)p% of

the blend's Btu's will lie.

If the "safe limit" of the incinerator is S, then the blending problem becomes one of

selecting the k such that

Mp<S

subject to the constraints

i=i

0 <£,<&,• Vi = l,—,n

where h = 1 are default values.

In particular, the "ultimate" solution of the blending problem requires determination

of min(Mp) = MP*. If MP* < S, then the blend satisfies the incinerator's "safe limit." Of

course, there are two additional situations that might occur, namely

1. Mp* > S, in which case a blend cannot be created which may be "safely"

processed by the incinerator.

2. There are multiple Mp (corresponding to various k combinations) for which

MP<S.

The blending problem specific to this project, and any blending problem of similar

character, is a multivariable constrained nonlinear optimization problem. The decision

variables are the k, and the term

$&

creates the nonlinearity of the objective function MP. Further, several variations on the

problem can be created such as maximizing a minimum value of B such that the

minimum value exceeds a lower "safe limit."

PROBLEM STATEMENT

The objective of this study was to select an appropriate method to solve the blending

problem, and then produce a working-model computer program to execute the selected

method for solving the problem. The computer program was written in Visual Basic 4.0

for Windows and performs two functions, namely

1. Determines the optimal h (called h*) to minimize Mp. The program can

determine if the blend meets the "safe limit" (Mp* < S).

2. Allows the user to conduct "what-if" analyses for user-supplied h values in

order to determine if the resulting blend will satisfy MP<S.

Because the number of sources will be at least two and perhaps as many as ten, the

resulting problem is the following multivariable nonlinear programming problem:

min X*,M+zJl>;
2af

i=i

subject to

2>,=i
i=i

0 <k-, <bt \/i = \,---,n

LITERATURE SEARCH

In order to evaluate what is currently available concerning blending problems, a

search of relevant literature was conducted. The problem being investigated is a

multivariable constrained nonlinear optimization problem. Because the problem is

nonlinear, linear programming is not a viable option. Most nonlinear optimization

problems concern economics or inventory problems. The most preferred method of

solving nonlinear optimization problems is by using a gradient search procedure,

which employs the partial derivatives of the objective function. Optimization methods

will be more fully discussed in the next section.

Nicholson (1) comments that in the industrial world a gap has been formed between

the people who develop optimization methods and those who use them. Nicholson's

premise is that the most accurate optimization methods will be useless unless they are,

if not theoretically comprehended, at least pragmatically understood by the

practitioner. An objective of this project was to implement a powerful and perhaps

complex optimization method and make it useful so that a layman can easily solve

blending problems.

In examining Nicholson's second volume of applications, along with other industrial

mixing books, it was found that most mixing problems deal with complex mixing

formulas, and tend toward chemistry problems. Virtually no material was found

relating directly to solving blending problems.

A helpful resource that was discovered was Experiments with Mixtures by Cornell.

However, Cornell's approach toward the mixing problem adopts design of experiments

and response surface methodology. The purpose of designing a complex experiment is

to construct an equation that adequately describes the response surface (8). Once the

response surface is estimated, it is then optimized by selecting the appropriate levels of

the factors. In this project, the response surface is assumed to be known exactly and the

real problem lies in selecting the levels of the factors (in this case, h).

POSSIBLE SOLUTION ALGORITHMS

Multivariable constrained nonlinear optimization problems can be solved using

various methods. Several methods that were considered are briefly described below.

Note that use of a linear approximation of a nonlinear objective function is less accurate

and was thus not considered.

1. Analytical (Calculus) Method

One method to solve a nonlinear optimization problem is the classical calculus

method. This involves, in a multivariable problem, determining the first partial

derivative of the objective function (MP in this case) with respect to each variable (i.e.,

h). Since the constraint Zfc = 1 is used in the blending problem, only (n-1) partial

derivatives must be determined. Each partial derivative must be set equal to zero,

resulting in a system of equations, and the h then solved for to produce a global or local

maximum, minimum, or a saddle point solution. This is not easy in the general case,

and in particular for the blending problem. For the blending problem each partial

derivative is a nonlinear function, and solutions for the h could require a difficult

search process. A general formula for the (n-1) first partial derivatives is shown in

Appendix 1, and an example for n = 2 sources is shown in Appendix 2. Since solution

via the classical calculus method is complex, this method can seldom be used

satisfactorily on even unconstrained problems (Nicholson 69). In addition, determining

whether extreme points are local minima, maxima, or saddle points can be difficult.

2. Gradient Search

When the system of equations obtained by setting the partial derivatives equal to

zero cannot be solved analytically, then a numerical search procedure should be used

(Hillier 514-5). Using the objective function, Mp, the goal is to reach a point eventually

where all of its partial derivatives are (essentially) zero (Hillier 515). The gradient, a

vector of the (n-1) partial derivatives, can be calculated and used to determine the

direction of the search. However, a gradient search procedure itself must employ

another search procedure to determine how far to advance, at each step, in the direction

of the gradient. Therefore, this method is somewhat complex and not the best method

to use when attempting to optimize with a computer. An example of this is shown in

Appendix 3.

3. Failure of Calculus - Direct Search

This type of search method differs from the previous method because direct search

procedures work directly with the objective function and avoid the difficulties of

calculating the gradients of functions (Nicholson 84). Advantages of this type of search

method are that not only is it less complicated than the gradient search, but it also can

readily cope with constraints (Nicholson 84). However, a disadvantage is that with an

increasing number of variables (sources), the required time for computation may

become large (Nicholson 84). This search method uses a base point and perturbations

to slowly move toward the optimal point. An example of this procedure is included in

Appendix 4.

4. Exhaustive Search

Since the previous methods are somewhat complex, a more computer-adaptable

method, such as an exhaustive search, was considered. This method employs an

examination of all possible combinations of k values, and then identifies the set(s) of k

values that will optimize the objective function. Depending on the amount of accuracy

desired in a solution, the number of calculations required to arrive at a solution can be

easily determined. For example, if ± 1% accuracy is desired (i.e., k = 0.00, 0.01, ...,

1.00), then each source (assuming a full range of 0.00 - 1.00) would have 101 different

possible k values. The following table shows the number of combinations that must be

examined for an exhaustive analysis (assuming n-1 independent sources):

Number of Sources Possible Solutions

2 101

3 10,201

4 1,030, 301

9 1.08 x 10 K

10 1.09 x 10 18

However, should ± 0.01% accuracy be desired, each source will have 10,001 possible

values. The number of feasible solutions then increases considerably, as shown in the

following table (assuming n-1 independent sources):

Number of Sources Possible Solutions

2 10,001

3 100, 020,001

4 1.00 x 10 12

9 1.00 x 1032

10 1.00 x 1036

This method of searching has the disadvantage of being computationally intensive,

even for a fast computer. However, there are several advantages of this method. First,

it is simple to execute. A computer simply uses loops to search over the entire range for

each variable, comparing the current solution to the currently optimal solution.

Second, this method guarantees optimality within a certain limit of accuracy. Because

every possible combination is considered, optimality can be assured. It is the

tremendous speed and error-free calculation ability of the computer that this

exhaustive search method seeks to exploit (Conley 5).

5. Iterative Search (Strategic Guessing)

Although the exhaustive search will work in all cases as well as guarantee optimality,

it must be admitted that much of the computational effort amounts to sheer waste.

Many of the calculations can quickly be discarded as non-optimal. However, is there a

way for the computer to do this? Specifically, if an algorithm can quickly eliminate a

number of answers, then very large problems can be solved with substantially fewer

calculations. For example, as indicated earlier, an exhaustive search for ten variables

ranging from 0-100% at 0.01% increments would require about 1036 calculations,

disregarding the comparisons. However, what if an algorithm was able to make a few

10

"smart" decisions and reduce the number of calculations to 1010 ? This concept of

looking only at strategic points and using those values to make decisions is the driving

force behind design of experiments (DOE). However, DOE can be used to adequately

understand the response surface, then assumes that optimization will easily follow. For

this project, the response surface, Mp, is known and its optimization is the problem.

Nevertheless, the experimentation methodology may be used to strategically locate the

optimal point. Cornell explains that a mixture problem with n ingredients results in a

factor space called a simplex. The geometric description of the factor space containing

the n components consists of all points on or inside the boundaries (vertices, edges,

faces, etc.) of a regular (n-l)-dimensional simplex (Cornell 6). Three sources (n = 3)

result in a simplex factor space that is an equilateral triangle, and for n = 4 the simplex

is a tetrahedron (Cornell 6). Therefore, the next step is to determine a way to

selectively examine points in the simplex; one possible approach is to evenly divide the

simplex, taking observations throughout. An ordered arrangement consisting of a

uniformly spaced distribution of points on a simplex is known as a lattice (Cornell 22).

A lattice design can be more accurate as the number of points in the simplex is

increased. A lattice design is said to have degree m where the points in the simplex are

spread such that the values of each component are

1 2
k{ =0— ,-,•••, 1

m m

if 0 < k < 1. Thus, a lattice design may be categorized by its degree and by the number

of components in the mixture. The number of selected points in a {n,m} simplex-lattice

design will be

(rc+m-l)!
m'.(n-l)! '

For example, a {3,2} design will have 6 points, while a {10,4} design will have 715

points. A table showing the total number of points for a \n,m) lattice is shown in

Appendix 5. Then, a further lattice could be used on a,selected region of the first

simplex, so that the optimal point is slowly brought to focus. An example with n = 2 is

shown in Appendix 6.

11

6. Iterative Search (Monte Carlo Simulation)

This was the method selected for use with the blending problem. Instead of

attempting to equally divide the simplex into regions as is done with an iterative search

method, a Monte Carlo simulation method examines a random sample of points inside

the simplex (Conley 20). Based on the optimal value in the sample, the simplex region

can be halved and another random sample of points can be taken. The computer can

select the optimal sample value at each iteration to be the centroid for the next

iteration's simplex, halving the simplex region as well. This technique employs

statistical probability and then relies on the massive speed of the computer to

determine an optimal solution.

As with any optimization technique, both advantages and disadvantages exist. A

primary advantage is that the method uses far fewer calculations than an exhaustive

search. Conley stated (as of 1981) that a computer, using Monte Carlo techniques,

found a true optimum solution to a problem with 1030 feasible solutions in about a

minute on a medium-sized computer, where an exhaustive search technique on a

problem of this scale would take the computer about 32 million trillion years (Conley

20). Other advantages include the ability to use an accurate (nonlinear) model with no

concern for linearity, continuity, or differentiability assumptions. One disadvantage is

that optimality cannot be assured because the method is based on randomness, and the

method could conceivably miss an optimal point. However, the probability that a

Monte Carlo solution investigating 1,000,000 combinations will come within 0.00001 of

the optimal solution is 1 - 0.999991'000'000 = 0.9999546. Therefore, the probability is

almost overwhelming that at least a near optimum solution will be found.

The basis for this method is that all feasible solutions map a distribution of objective

function values (see Appendix 7). Most values tend toward the objective function

mean, and the optimal solution (to the specific problem of this project, Mp) is at the left

tail of the distribution. At each iteration of the simulation, a specified number of

samples, say 4000, are selected. The probability that one random sample will not

produce a value in the lower 0.01 tail of the Mp distribution is 0.99. However, the

probability that none of the 4000 samples will produce a value in the lower 0.01 tail of
V

12

the distribution is 0.99 4000, which is about 3.5 x 10 -18. With each iteration, the feasible

region is made smaller and smaller, so that another 4000 samples will most likely yield

a solution in an even lower tail of the distribution, say 0.0001. After several iterations

(< 10), the optimal solution is virtually guaranteed. Therefore the optimal solution will

most likely be found after the computer evaluates a mere 4000 x 10 = 40,000 possible

solutions, which is a drastic reduction in calculations compared to the exhaustive

search method. The only situation that would disrupt the Monte Carlo approach

would be a distribution (in an optimization problem) that had one isolated optimal

solution that was separate from the remainder of the solutions (Conley 189, see

Appendix 8).

The optimization procedure works as follows:

1. Assign the initial optimal solution by letting fc = 1/n for i = 1, 2, ... , n, where

Ifc = 1 and 0 < fc < &,• . Call this solution fc* Its corresponding objective

function value, Mp, will be Mp*.

2. Set iteration number,;' = 1.

A. Randomly generate 4000 samples, where for sample s, s = 1, 2, ... ,

4000, the fc are randomly selected on the interval 0 < fc < h and where

Efc = 1. Compute the corresponding Mp value for each sample.

B. For each sample s = 1, 2, ... , 4000, compare MP with MP*. If MP < MP*,

then replace Mp* with Mp and let fc* = h.

C. Using k*, i = 1, 2,... , n, as the centroid for source i, determine the new

reduced range of each h for the next iteration where

max (fc* - 2 -i -1, 0) < h < min (h* + 2 - i - \ h).

3. For iterations / = 2,3,..., 10, use h* and Mp* from the previous iteration.

A. Randomly generate 4000 samples, where for sample s, s = 1, 2, ... ,

4000, the ki are randomly selected on the interval

max (h* - 2-i-1, 0) < h < min (fc* + 2-M, &,-)

13

obtained from the previous iteration, where Ua = 1 and a

corresponding Mp is computed.

B. For sample s = 1,2, ... , 4000, compare MP with MP*. If MP < M/, then

replace Mp* with MP and let fc* = h

C. Using fc*, i = 1, 2,..., n, as the centroid for source i, determine the new

reduced range of each h for the next iteration where

max (k* - 2-i-i, 0) < h < min (h* + 2-M, &,•)

where / indicates the iteration just completed.

D. Return to step 3 until 10 iterations have been completed.

4. The identified optimal solution is h*, with an objective function value of Mp*.

For example, assume that the problem consists of three sources, that the optimal

solution is 0.1, 0.3, and 0.6 for each source respectively, resulting in an' objective

function value of 50, and that each source has bounds placed at 0.0 and 0.8:

Step 1. The initial solution (fc*) would be set at 0.3333 for each source, with an

objective function value of, say, Mp* = 62.

Step 2 (A) The algorithm would generate the first sample of proportion values,

say ki = 0.2289, k2 = 0.5372, and k3 = 0.2339, and (B) evaluate the objective function

to be Mp = 63.87. Therefore, the second random sample would be generated and

again compared to the initial optimal solution. Assume that after 4000 samples,

the best solution thus far is h* = 0.1019, k2* = 0.2901, and k3* = 0.6080, with an

objective function value of Mp* = 52.17. (C) This solution would form the basis

for determining the new range of possible values. For iteration 1, the algorithm

attempts to add/subtract 2"2 = 0.25 from each fc* value to obtain the new reduced

range. The first source would now have a range of (max (0.1019 - 0.25, 0.00)) =

0.00 and (min (0.1019 + 0.25, 0.8000)) = 0.3519, the second a range of 0.0401 -

0.5401, and the third a range between 0.3580 - 0.8000. Thus, the second source

has a full range of 0.5000 while the other two were limited by their bounds,

resulting in smaller ranges.

14

Step 3 (A/B) Iteration 2 would then begin and another 4000 samples would be

generated within this smaller range of h values. (C) Assume this time that after

the 4000 additional samples, the best proportions found thus far are 0.1009,

0.2987, and 0.6004, with an objective function value of MP* = 50.19. This solution

would form the basis for determining the new range of possible values. For each

source, the algorithm now attempts to add/subtract 2 -3 = 0.125 from each h*

value to obtain the new reduced range. The first source would now have a range

of 0.0000 - 0.2269, the second a range of 0.1737 - 0.4237, and the third a range of

0.4754 - 0.7254. This time, the second and third sources have a maximum range

of 0.25 while the first has a smaller range. (D) The second iteration would be

complete and eight more iterations would follow, each taking 4000 samples from

an ever-decreasing range. At iteration 10, the range for each of the sources would

be 2 -9 = 1.91 x 10 -3. This means that 4000 random samples would be selected

from this range on each of the h values, which would guarantee optimality with

acceptable accuracy.

Step 4 The optimal solution of k* = (0.1000, 0.3000, 0.6000) for i = 1, 2, 3, with an

objective function value of MP* = 50.00000 is reported as the final answer.

At each iteration, the feasible region is at least halved and most likely reduced much

more. If; is the iteration number, where;' = 1, 2, ..., 10, and;' = 1 (first iteration), with

kx* = 0.7 and the bounds 0.00 < h < 0.90, then for the next iteration (i.e.,;' = 2),

max (0.7 - 2 -1 - \ 0.00) < kx < min (0.70 + 2 -1 - \ 0.90)

max (0.7 - 0.25,0.00) < h < min (0.70 + 0.25, 0.90)

max (0.45,0.00) < h < min (0.95,0.90)

0.45 < fci < 0.90.

Essentially, the procedure uses (n-l)-dimensional "rectangles" that search through

the n dimensional space (always staying inside the constraints) until the rectangles

focus on the optimal answer (Conley 229). According to the laws of probability, the

algorithm will quickly find the optimal solution.

15

The Monte Carlo method disregards classical optimization methods in favor of

relying on the pure speed of the computer combined with the laws of probability. For

any optimization problem of one hundred variables or less, Conley (245) recommends

using this method to optimize a function.

MONTE CARLO SEARCH COMPUTER PROGRAM

The program has two options: 1) optimize a blend, and 2) user "What-if" analysis.

The first option will allow the user to input the following values:

1. Number of sources, n (selected from the range 2-10)

2. For each source:

A. Source mean, (a.,

B. Source variation: variance, a? or standard deviation, G;

C. Source upper bound, h (1.00 = default value); (bn must remain at 1.00)

3. "Safe limit," S (used for comparison)

4. Probability p (proportion of actual blend output that will exceed "maximum"

value, Mp*. The program will then determine the appropriate number of

standard deviations, Zp, to add to the expected mean of the blend to

correspond with this probability. Note that possible p values are: 0.25, 0.10,

0.05,0.025, 0.01,0.005,0.0025,0.001,0.0001).

The program will output:

1. The expected output of the blend, [LB

2. The standard deviation of the blend, CB

3. The optimal minimum "max" value, Mp*

4. A comparison of optimal and "Safe limit" (SAFE/UNSAFE)

5. The corresponding fc,* for each source

The second option of the program will be for user "What-if" analysis. The user

inputs will be:

1. Number of sources, n (selected from the range 2-10)

2. For each source:

16

A. Source mean, Ui

B. Source variation: variance, d2 or standard deviation, G

C. Proportion of the source, h, in the blend (in keeping with Xfc = 1)

3. "Safe limit" value, S

The program will then give:

1. The expected output value of the given blend, [iB

2. The standard deviation of the blend, GB

3. Proportion of the blend output, B, that will exceed the "Safe limit."

VISUAL BASIC 4.0

Microsoft's Visual Basic 4.0 for Windows was the programming language selected to

code the computer program. "Visual Basic is an object-oriented/event-driven

programming language that is easy enough for a nonprogrammer to use, yet

sophisticated enough to be used by professional programmers" (Zak 5). Although

Visual Basic is a relatively new language, several advantages that the language offers

made this selection practical. Among the advantages are:

• Visual Basic programs are run in a Windows environment, making the user

interface simple, neat, and user-friendly

• Visual Basic programs can be stored in an executable file (*.exe) so that any

user with a Windows 95 operating system may run the program

• Visual Basic allows the programmer to spend more time in coding the

program details while user interface is virtually self-coded by the program

itself.

A Visual Basic program is structured around forms and objects. Forms are the

different windows that will allow user interaction, and the objects are the various text

boxes, drop menus, and click commands that appear on each form. Therefore the first

step in Visual Basic programming is to develop the user interface in the framework of

forms and objects. After this major step, instructions concerning each object on the

form are given as code.

17

This program has four basic forms. The first form is the "Control Panel." From this

form, the user may move to one of the major program functions or exit the program.

The second major form is the "Optimization" form. This form contains the overall

inputs and all outputs for the optimization problem. The third form is the "What-if"

analysis form which contains overall inputs and all outputs for the "What-if" analysis.

The last form actually contains a sub-form for each source. These sub-forms allow the

user to input data specific to each blending source.

In order to allow the reader and perhaps others who wish to expand on this project to

more fully understand the program as a whole and the optimization procedure,

pseudocode is given as Appendix 9. Furthermore, the actual code for the optimization

of the blending problem with two sources is given as Appendix 10, while Appendix 11

contains the code used in the "What-if" analysis for two sources. The reader will note

that all Visual Basic 4.0 "comments" are preceded by an apostrophe (')•

PROGRAM VALIDATION

In order to verify whether Blend was properly optimizing proportions, nine sample

problems (one for each n = 2,...,10) were optimized. Before optimizing with Blend, the

problems were solved with LINGO, a nonlinear optimization software package. Each

problem was run five times while comparing only the Mp* values, since it is true that

the actual proportions can vary substantially while maintaining extremely similar Mp*

values. From all 45 runs, the average deviation from the optimal answer was 0.66%.

Of interest was the fact that most of the error came from one problem that Blend

seemed to have more difficulty in optimizing, while no unique features of the problem

could be established. Overall, Blend demonstrated a strong optimization potential;

experimental results for problems where n = 3,7, and 10 are shown in Appendix 12.

18

REFERENCED LITERATURE

Conley, William. Optimization: A Simplified Approach. Petrocelli Books, Inc., NY,

1981.

Cornell, John A. Experiments with Mixtures. 2nd ed. John Wiley & Sons, Inc., NY,

1990.

Hillier, Frederick S., and Gerald J. Lieberman. Introduction to Operations Research. 5th

ed. McGraw-Hill, USA, 1990.

Nicholson, T.A.J. Optimization in Industry. Volume 1: Optimization Techniques.

Aldine-Atherton, Inc., Chicago, 1971.

Zak, Diane. Programming with Microsoft Visual Basic 4.0 for Windows. CTI,

Cambridge, MA, 1997.

UNREFERENCED LITERATURE

Chvätal, Vasek. Linear Proeramming. W.H. Freeman and Company, NY, 1983.

Foulds, L.R. Optimization Techniques: An Introduction with 72 Illustrations.

Springer-Verlag, NY, 1981.

Gabasov, Rafail F., and Faina M. Kirillova. Methods of Optimization. Optimization

Software, Inc., NY, 1988.

Hines, William W. and Douglas C. Montgomery. Probability and Statistics in

Engineering and Management Science. 3rd Ed. John Wiley & Sons, NY, 1990.

Nicholson, T.A.J. Optimization in Industry. Volume 2: Industrial Applications.

Aldine-Atherton, Inc., Chicago, 1971.

Penfold, John W. Microsoft Visual Basic: The Programmer's Companion. Sigma Press,

England, 1993.

Prata, Stephen. Certified Course in Visual Basic 4. Waite Group Press, CA, 1995.

Wang, Wallace. Visual Basic 4 for Windows for Dummies. IDG Books Worldwide,

USA, 1996.

19

APPENDIX 1

General Formula Using (n-1) Partial Derivatives

General Formula Using (n-1) Partial Derivatives

For this derivation, assume:

Source Proportion Mean Standard Deviation

1 fa SiJUi ricn

2 fa S2JU1 TzOi

n-1 kn-l
n-1

Sn-lJUl Tn-lCTl

n
!=1

SnJUl r„<Ti

and where Si = ri = 1. Let the subscript B denote the blend.

Blend Mean:

f n-1 A

V ,=i /
•*nM

A» = A[*I(* ""O^fe -*J+—+*»-l(J»-l -■S») + *»]

^B=A

n-1

1=1

Blend Standard Deviation:

n-1 V

a2 = kyxa\ + k\rla\ +• • •+^1r„
2_1cr1

2 + 1 - £ kt
~2^2
r«.°l

n-1 / n-1 V

v. ,=1 y 1=1

Now, define Mp = JUB + ZCTB

M=H
n-1

Z*i($-0+5»
i=l

+ Z<7,
n-1 /" n-1 "\

ZW+r.2 1-Z*.
i=l N 1=1 '

2-lK

Appendix 1

Taking the partial derivative results in (n-l) equations:

= y"i(5y-5
n) + 7ö"i

'n-l (n-l V

1=1

/'n-l Y\
Ikrf+lkfl-lrl+lrl

M=l yy

V/ = l,2,...,«-l

= M(^-
5

«)
+

ZO

'I V/ +7"«2
n-l AA

i=1 yy

n-l /" «-1 A2

1=1 ^ >•=! y

y/ = u...,/i-i

^

^
= M(5;-*n) + Zö"l

f fn-1 \N

*//+%' I>, -1
V ^,=1 yy

n-l (n-l V

1=1 V ,=i /

-,-1/

V/ = l,2,...,«-l

= M(5>-5«) + Zcri V/-'1.2
NA

v ,=i yy

n-l n-l n-l n-l ^

2>.V+',2 1-2Z*I+ZZ*I*.
1=1 1=1 i=l m=l

v/ = i,2,...,«-i

Appendix 1

APPENDIX 2

Example of an Analytical Solution when n = 2 Sources

Example of an Analytical Solution when n = 2 Sources

Given
Hi=50 ai=2 (j.2 = 40 02 = 6

assume
Za = 0.00135, so Z = 3.00

then
Si=l ri=l s2=.8 r2 = 3

solution will require (n -1) = 1 derivative :

+ Zo-,
avip

ckj = H{SJ

cMp

f ("-1 Y
V? ->;2 i-2>,

V 7 ; V ,=i)j

n-\

i=i v i=i i=i m=i ^

-,-iz

<3t.
50 (l -0.8) + 3-2 (yt1-l

2-32(l-)t1))[yt1-l
2+32(l-2^+A:1

2)]

set derivative equal to zero and solve for k\:

ckx
= 10 + (60ifc, -54)[l0£2 -18/fc, +9] A = 0

- 10-y/lOA:2-18*!+9 = 60*i ~54

100 (lOfci2 - 18/ti + 9) = 3600fci2 - 6480k + 2916

26h2-A6.8ki + 20.16 = 0

using the quadratic formula :

K
46.8 + V46.82-4-26-20.16

2-52

ki = 1.086 or 0.7139

then
Jti = 0.7139 and k2 = 0.2861

Appendix 2

APPENDIX 3

Example of Gradient Search Procedure (n = 2)

Given:
Hi=50

assume
s = .005

then
si=l

Example of Gradient Search Procedure (n = 2)

(adapted from Hillier/Lieberman)

Gi = 2 (j.2 = 40 02 - 6

Z« = 0.00135, so Z = 3.00

n=l s2=.8 r2 = 3

M = 10£, + 40 + 6^10^-18^+9

dMp

dkx
= 10 + (60£t - 54)(l Okf -18£, + 9)

begin at fci = 0.5
dkx

= -0.7331

VM =(-0.7331)

fci= 0.5 - t (-0.7331) = 0.5 + 0.7331f

Mp = 10(0.5 + 0.73310 + 40 + 6^10(0.5 + 0.733 If)2 -18(0.5 + 0.733 If) + 9

Mp = 45 + 7.33 It + 6V2.5 + 7.331f + 5.3744f2-9-13.1958f + 9

M = 45 + 7.33 If + 6V5.3744f2-5.8648f + 2.5

one-dimensional search to find min (t >0) t* of Mp

tff
= 7.331 +

6 •0.5(l0.7488f-5.8648)

V5.3744f2-5.8648f + 2.5
= 0

32.2464f-17.5944
-7.331

V5.3744f2-5.8648f + 2.5

(322464f-17.5944)2 = (- 7.33l)2(5.3744f2 - 5.8648f + 2.5)

Appendix 3

1039.8303r -1134.7121/ + 309.5629 = 288.8396r - 315.1955/ +134.359

1509901t2 - 819.5166t +175.203 9 = 0

t = 0.7994 or t = 0.2918

*i = 0.5 + 0.7331(0.7994) or k i = 0.5 + 0.7331(0.2918)
= 1.086 = 0.7139

not feasible * feasible *

dMp n.166
Wp(07139) = _Z=I0.7I_ = _0.o02

which is sufficiently close since s = .005.

Therefore, h = 0.7139 and k2 = 0.2861.

Appendix 3

APPENDIX 4

Example of Direct Search Procedure

Example of Direct Search Procedure
(adapted from Nicholson)

Given:
m=50

assume
s = .01

then
Si=l

Gi=2

Z = 3.00

n=l

U2 = 40

s2=.8

a2 = 6

r2 = 3

M = 10*, +40+6^10^-18^+9

begin at fa = 0.5 perturbation step size, 8 = 0.01

*Base point, B« = 0.5

Mp (B<°)) = 54.4868
MP (B(°) + 8) = 54.4357 accept and let

* check "double" step

* check "double" step

* check "double" step

* check "double" step

* check "double" step

* begin again

* check "double" step

* check "double" step

* check "double" step

Mp (B(°) + 28) = 54.3861 accept

MP (B(°) + 2(28)) = 54.2913 accept

Mp (B(°) + 2(48)) = 54.1225 accept

MP (B<°) + 2(88)) = 53.8894 accept

MP (B(°) + 2(168)) = 54.0910 reject

so T4« = 0.66 = B«

MP (B« + 8) = 53.8724 accept

Mp (B« + 28) = 53.8586 accept

MP (BW + 2(28)) = 53.8411 accept

MP (B« + 2(48)) = 53.851 reject

so T2« = 0.70 = BW

To« = 0.51

Ti« = 0.52

T2^ = 0.54

T3(D = 0.58

T4« = 0.66

To« = 0.67

Ti« = 0.68

T2(2) = 0.70

Appendix 4

* begin again
Mp (BW + 8) = 53.8377 accept T0(3> = 0.71

* check "double" step MP (B<2) + 25) = 53.8381 reject

so ToP) = 0.71 = BP)

* begin again
MP (B<3> + 6) = 53.8381 reject

* since no step, try step back
Mp (B<3> - 5) = 53.8411 reject

* since step in either direction is worse, take current base as optimal

B(3) = o.71 so fci = 0.71 k2 = 0.29

Appendix 4

APPENDIX 5

Total Points of a Lattice Design

Total Points of a Lattice Design

n-> 2 3 4 5 6 7 8 9 10
mJ-
1 2 3 4 5 6 7 8 9 10

2 3 6 10 15 21 28 36 45 55
3 4 10 20 35 56 84 120 165 220

4 5 15 35 70 126 210 330 495 715
5 6 21 56 126 252 462 792 1287 2002

Appendix 5

APPENDIX 6

Example of a Lattice Design Search Procedure (n = 2)

Example of a Lattice Design Search Procedure (n = 2)

(j.2 = 40 02 = 6

lattice order = 5

S2 = .8 r2 = 3

Given:
m=50 ai=2

assume
s = .005 Z = 3.00

then
Si=l n=l

M = 10Ä:, + 40 + 6^10^-18^+9

* search for optimal fci beginning with endpoints at (0,1)

MP(0) = 58
MP(0.25) = 56.08
MP(0.50) = 54.49
MP(0.75) = 53.86 *
MP(1) = 56

* re-center search and continue ...

MP(0.50) = 54.49
MP(0.625) = 53.97
Mp(0.75) = 53.86 *
Mp(0.875) = 54.46
Mp(l) = 56

* re-center search and continue ...

Mp(0.625) = 53.97
Mp(0.6875) = 53.850 *

Mp(0.75) = 53.86
Mp(0.8125) = 54.054
Mp(0.875) = 54.46

* re-center search and continue ...

Mp(0.625) = 53.97
Mp(0.65625) = 53.8966
Mp(0.6875) = 53.850
Mp(0.71875) = 53.8378 *
Mp(0.75) = 53.86

j

Appendix 6

* re-center search and continue

MP(0.6875) = 53.850
Mp(0.703125) = 53.83959
Mp(0.71875) = 53.8378
Mp(0.734375) = 53.8457
MP(0.7500) = 53.86

*

*

re-center search and continue

Mp(0.703125) = 53.83959
Mp(0.7109375) = 53.83753
Mp(0.71875) = 53.8378
Mp(0.7265625) = 53.8405
Mp(0.734375) = 53.8457

re-center search and continue ...

Mp(0.703125) = 53.83959
Mp(0.70703125) = 53.83827
MP(0.7109375) = 53.83753
Mp(0.71484375) = 53.8373702
MP(0.71875) = 53.8378

*

* re-center search and continue ...

Mp(0.7109375) = 53.83753
Mp(0.712890625) = 53.8373763
Mp(0.71484375) = 53.8373702 *
MP(0.716796875) = 53.8375129
Mp(0.71875) = 53.8378

accuracy currently at 0.001953125, which is sufficient since 8 = .005.

fa = 0.71484375 and k2 = 0.28515625

Appendix 6

APPENDIX 7

Distribution of Objective Function Values

3£

Distribution of Objective Function Values
(taken from Conley)

:■ v\~Y J4M*1 'M '"-•■

[Ä!

.4 «Ü

 (r:
-fi

.!,;. J-

.p««

 : j
flllf if ll^t,

Ilitl

'*/'::

te ill 3*8*'4.

X'S. ■* l.C^.:

.iro €**

Appendix 7

APPENDIX 8

Disruption of a Monte Carlo Approach

Disruption of a Monte Carlo Approach

one extra,
isolated value

lower 0.0001
tail

Appendix 8

APPENDIX 9

Pseudocode

PSEUDOCODE

This appendix gives the general code for each object of each form (i.e. how the

program will respond to any action that the user might take). Note that "dimming"

involves leaving a label or text box in sight while not allowing the user to access it.

Also, the mouse "focus" is defined as the current cursor position on a form.

1. Control Panel

When the user clicks on "Optimize"

Remove the "What-if' form from view, should it currently be active

Show the "Optimize" form while also showing the Source Data form minimized

When the user clicks cm "What-if

Remove the "Optimize" form from view, should it currently be active

Show the "What-if form while also showing the Source Data form minimized

When the user clicks on "Exit"

Exit the program

2. Optimize

When the firm loads

Initialize the "Already" boolean variable to false

Load the choices into the "Number of Sources" list box

Initialize the box set to Number Sources = 2

Load the choices into the "Probability" list box

Initialize the box set to Probability = 0.01

Call the "Dim Blend Proportions" procedure

Call the "Un-dim Bounds" procedure

When the user changes the Number of Sources using the list box

Hide/Disable Source Data forms and Optimal Proportions (sources 3-10)

Un-dim all upper bounds for sources 3-9

j

Appendix 9

Show appropriate Source Data forms and Optimal Proportions (sources 3-10)

Show warning message about forms 8-9-10 if necessary (Already is false) and set

Already to true

When the user clicks on the "Cancel" button

Close Source Data/Optimize forms

Show the Control Panel form

When the user clicks on the "Optimize" button

Declare local variables

Initialize variables

Call appropriate optimization procedure (depending on number of sources)

Display output values

When the user changes the "Safe limit"

Error-check to ensure that a number was input

Show warning message if user did not input a numerical value

Return mouse focus to the "Safe limit" text box

3. "What-if Analysis

When the form loads

Initialize the "Already" boolean variable to false

Load the choices into the "Number of Sources" list box

Initialize the box set to Number Sources = 2

Call the "Un-dim Blend Proportions" procedure

Call the "Dim Bounds" procedure

When the user changes the Number of Sources using the list box

Hide/Disable Source Data forms (for sources 3-10)

Show appropriate Source Data forms (for sources 3-10)

Show warning message about forms 8-9-10 if necessary (Already is false) and set

Already to true

Appendix 9

When the user clicks on the "Cancel" button

Close Source Data / What-if Analysis forms

Show the Control Panel form

When the user clicks on the "Compute" button

Declare local variables

Initialize variables

Call appropriate compute procedure (depending on number of sources)

Display output values

When the user changes/finishes changing the Maximum Safety Value text box

Error-check the input to ensure that it is a numerical value

Return the mouse focus back to the Max Safety Value text box

4. Source Data (10 forms, all identical)

When the form loses the mouse focus

Declare local variables

Error-check all source data (that all values are numerical)

Display an appropriate message if error exists

When the user changes/finishes changing any of the following: blend proportion, mean output,

output variation, upper bound, lower bound

Declare local variables

Error-check the appropriate data (to ensure that it is a numerical value)

Check to ensure that numbers are feasible

Display error message if necessary

Return mouse focus to text box found in violation

5. Procedures

Dim Blend Proportions Procedure

Dim the blend proportion label and text box on each Source Data form

Dim Bounds Procedure

Dim the bound frame, labels, and text boxes on each Source Data form

Appendix 9

Un-dim Blend Proportions Procedure

Un-dim the blend proportion label and text box on each Source Data form

Un-dim bounds Procedure

Un-dim the bound frame, labels, and text boxes on each Source Data form

Max Procedure

Set the maximum value to the first element in the array

Compare each element in the array, setting it to maximum value if it is larger

Min Procedure

Set the minimum value to the first element in the array

Compare each element in the array, setting it to minimum value if it is smaller

Z-Alpha Procedure

Select the appropriate case of the user-defined probability

Assign the Z value corresponding to that probability

Standard Normal Inverse Procedure

Select the appropriate range of standardized Z values

Assign the probability corresponding to that range of Z values

Compute "What-if Analysis Procedure (9 procedures, each for a given number of sources)

Declare local variables

Initialize variables (including proportions (fc), means, and variances for each source)

Determine if all proportions sum to 1, and if all data is non-negative

If error exists, display appropriate message and exit subroutine

Use a loop to calculate the blend's mean, variance, and standard deviation

If the standard deviation is zero, then

Set the probability of exceeding maximum safe value to either 0 or 1

Otherwise,

Calculate Z

Call the Standard Normal Inverse procedure to find the probability

Optimize Procedure (9 procedures, each for a given number of sources)

Declare local variables

Appendix 9

Initialize absolute bounds

Initialize source means/ variances

Initialize Z, current conditions, and check initial centroid feasibility

Check upper bound feasibility (that the sum of upper bounds > 1)

Set initial feasible solution

If feasible, then initial solution = centriod point (all sources set to 1/NumSources)

If not, then set all sources at upper bound until sum = 1

Compute mean, standard deviation, and objective function value of initial solution

For each iteration:

For each sample:

Set blend proportions (except last source) randomly within current bounds

Set final blend proportion as (1-sum of others)

Calculate objective function value, Mv

Compare Mp to Mp*, replacing the optimal if Mp is less

Repeat for all samples

After all samples taken (i.e. end of iteration) reduce range of each blending

source appropriately

Repeat for all iterations

Calculate final values to send as output (blend mean, standard deviation, objective

function value)

Appendix 9

APPENDIX 10

Code for Optimization of 2 Sources

Public Sub OptTwo(OptMean, OptMax, OptStandDev, OptProb, NumSources, OptProport(
)

As Single)

, *** THIS PROCEDURE IS THE CODE FOR OPTIMIZING 2 SOURCES ***

DECLARE LOCAL VARIABLES
Dim i As Integer
Dim i As Integer
Dim k As Inteqer
Dim Z As Single

Dim AbsLow(l To 2) As Single
Dim AbsUpd To 2) As Single
Dim Mu(l To 2) As Single
Dim Var_(l To 2) As Single
Dim OptimalMp As Single
Dim UBSum As Single

Dim BlendMean As Single
Dim BlendVar As Single
Dim CurrLow(l To 2) As Single
Dim CurrRanged To 2) As Single
Dim CurrUpd To 2) As Single
Dim CurrSolnd To 2) As Single
Dim CurrSolnMp As Single
Dim Sum As Single
Dim Feasible As Boolean

index for sample size
index for iterations
index for each source
Z alpha value for computing max value

absolute lower bounds for each source
absolute upper bounds for each source
mean output for each source
variance for each source
current optimal max value
error-checks upper bounds

current blend's mean
current blend's variance
current lower bound for each source
current feasible range for each source
current upper bound for each source
current solution's proportions
current solution's max value
determines final source's proportion
determines initial centroid feasibility

.Text

.Text

er

' INITIALIZE VARIABLES
' initialize absolute bounds

For k = 1 To NumSources
AbsLow(k) = 0

Next k
AbsUpd) = frmSourceOne!txtSourceOneUB
AbsUp(2) = frmSourceTwo!txtSourceTwoUB

' initialize source means/variances
Mud) = frmSourceOne!txtSourceOneMean.Text
Mu(2) = frmSourceTwoitxtSourceTwoMean.Text
If (frmSourceOne!optSourceOneSD.Value = True) Then

Var(l) = (frmSourceOneltxtSourceOneVar.Text) A 2
Else

Var(l) = (frmSourceOneltxtSourceOneVar.Text)
End If
If (frmSourceTwo!optSourceTwoSD.Value = True) Then

Var(2) = ffrmSmirripTwo! txtSourceTwoVar. Text) A 2
Else

Var(2)
End If

' initialize
Feasible =
Z = ZAlpha
UBSum = 0
For k = 1 To NumSources

CurrLow(k) = AbsLow(k)
CurrUp(k) = AbsUp(k)
UBSum = UBSum + AbsUp(k)
If (AbsUp(k) < (1 / NumSources)) Then

Feasible = False
End If

Next k
' check upper bound feasibility

If (UBSum < 1) Then
MsgBox "Upper bounds are infeasible; must sum to at least 1

Bounds"
Exit Sub

(frmSourceTwo!txtSourceTwoVar.Text;

= (frmSourceTwo!txtSourceTwoVar.Text)

Z, current conditions; check centroid feasbility
= True
(OptProb)

48, "Upp

End If .
' set initial feasible solution; compute corresponding ofcnective function val

ue
Sum = 0
BlendMean = 0
BlendVar = 0
For k = 1 To NumSources

If (Feasible = True) Then
OptProport(k) = 1 / NumSources

Else
OptProport(k) = AbsUp(k)
Sum = Sum + OptProport(k)
If (Sum > 1) Then

Sum = Sum - OptProport(k)
OptProport(k) = 1 - Sum
Sum = Sum + OptProport(k)

End If
End If
BlendMean = BlendMean + (Mu(k) * OptProport(k))
BlendVar = BlendVar + ((OptProport(k) A 2) * Var(k))

Next k
OptimalMp = BlendMean + Z * Sqr(BlendVar)

' CONDUCT OPTIMIZATION
For i = 1 To Numlterations

For i = 1 To SampleSize
' set blend proportions randomly

Sum = 0
For k = 1 To (NumSources - 1)

CurrUp(k) = Min(CurrUp(k), 1 - Sum)
CurrRancre(k) = CurrUp (k) - CurrLow(k)
CurrSoln(k) = CurrLow(k) + (CurrRanqe(k) * Rnd)
Sum = Sum + CurrSoln(k)

Next k
' set final source proportion as 1 - (sum of others)

CurrSoln(NumSources) = 1 - Sum
' calculate objective function value (Mp)

BlendMean = 0
BlendVar = 0
For k = 1 To NumSources

BlendMean = BlendMean + (Mu(k) * CurrSoln(k))
BlendVar = BlendVar + ((CurrSoln(k) A 2) * Var(k))

Next k
CurrSolnMp = BlendMean + Z * Sqr(BlendVar)

' compare to current optimal
If CurrSolnMp <= OptimalMp Then

OptimalMp = CurrSolnMp
For k = 1 To NumSources

OptProport(k) = CurrSoln(k)
Next k

End If
Next i

* after all samples taken (i.e. end of iteration) reduce ranqe of each
' blendinq source appropriately

For k = 1 To NumSources
CurrLow(k) = Max(OptProport(k) - 2 A (-1-1), AbsLow(k))
CurrUp(k) = Min(OptProport(k) + 2 A (~i - 1), AbsUp(k))

Next k
Next i

' CALCULATE VALUES TO SEND AS OUTPUT
OptMean = 0
BlendVar = 0
For k = 1 To NumSources

If OptProport(k) < 0 Then
OptProport(k) = 0

End If

OptMean = OptMean + (Mu(k) * OptProport(k))
BlendVar = BlendVar + ((OptProport(k) A 2) * Var(k))

Next k
OptStandDev = Sqr(BlendVar)
OptMax = OptMean + Z * OptStandDev

End Sub

APPENDIX 11

Code for "What-if' Analysis for 2 Sources

Public Sub WIComputeTwo(NumSources As Inteqer, MaxSafeVal As Sinqle,
BMean As Sinqle, BStandDev As Sinqle, WIProb As Sinqle)

r *** THIS PROCEDURE IS THE CODE
' A "WHAT-IF" ANALYSIS FOR 2

FOR CALCULATING
SOURCES ***

Blend Proportions
Source Mean
Source Variation
Determines Probability
Detects errors in Source Data
Detects error in Blend Proportion
Detects error in Source Mean
Detects error in Source Variation
Sums the Blend Proportions
Blend Variance

' Declare Local Variables
Dim i As Inteqer
Dim Ki(l To 2) As Sinqle
Dim Mu(l To 2) As Sinqle
Dim Var(l To 2) As Sinqle
Dim Z As Sinqle
Dim NumericErr As Boolean
Dim ProportErr As Boolean
Dim MeanErr As Boolean
Dim VarErr As Boolean
Dim ProportSum As Sinqle
Dim BVariance As Sinqle

' Initialize Variables
ProportErr = False
MeanErr = False
VarErr = False
ProportSum = 0

Kid) = frmSourceOne! txtSourceOneKi.Text
Ki(2) = frmSourceTwo!txtSourceTwoKi.Text

Mud) = frmSourceOne ! txtSourceOneMean. Text
Mu(2) = frmSourceTwo!txtSourceTwoMean.Text

If (frmSourceOneloptSourceOneSD.Value = True) Then
Var(l) = (frmSourceOne!txtSourceOneVar.Text) " 2

Else
Var(l) = (frmSourceOne!txtSourceOneVar.Text)

End If
If (frmSourceTwoJoptSourceTwoSD.Value = True) Then
Var(2) = (frmSourceTwo!txtSourceTwoVar.Text) A 2

Else
Var(2) = (frmSourceTwo!txtSourceTwoVar.Text)

End If

• Error-Check Variables (Probs sum to 1; non-neqative values)
For i = 1 To 2

If Ki(i) < 0 Then
ProportErr = True

End If
If Mu(i) < 0 Then

MeanErr = True
End If
If Var(i) < 0 Then

VarErr = True
End If
ProportSum = ProportSum + Kid)

Next i

' If Error Exists, Display Appropriate Messaqe and Exit Subroutine
If ((ProportErr) Or (ProportSum <> 1)) Then _ n
MsqBox "Proportions must be non-neqative and sum to 1. Try aqain.", 48, ' C

annot Compute"
Exit Sub

End If
If MeanErr = True Then
MsqBox "Source means must be non-neqative. Try aqain.", 48, "Cannot Comput

e"
Exit Sub

End If
If VarErr'= True Then
MsqBox "Source variations must be non-neqative. Try aqain.", 48, "Cannot C

ompute"
Exit Sub

End If

' Calculate Values
For i = 1 To 2
BMean = BMean + Ki(i) * Mu(i)
BVariance = BVariance + (Ki(i) A 2) * (Var(i))

Next i
BStandDev = Sqr(BVariance)
If BStandDev = 0 Then

If BMean > MaxSafeVal Then
WIProb = 1

Else
WIProb = 0

End If
Else

Z = (MaxSafeVal - BMean) / BStandDev
Call SNormInv(Z, WIProb)

End If

End Sub

APPENDIX 12

Validation Data

n = 3

Hi = 50

H3 = 45

Validation Data

ci2 = 4
Ö22 = 36
CJ32 = 12

&i = 1.00
b2 = 1.00
b3 = 1.00

Mv* = 52.16074

experimental runs
1) 52.16074
2) 52.16074
3) 52.16074
4) 52.16074
5) 52.16074

% error = (52.16074 - 52.16074) / 52.16074
= 0.00%

n = 7

m = 50 ai2 = 4 fa = 1.00
H2 = 40 a2

2 = 36 fa = 1.00
M3 = 45 CJ32 = 12 b3 = 0.09
\u = 51.5 a4

2 = 0.01 fa = 1.00
^ = 47 as2 = 20 fcs = 1.00
M* = 51 G62 = l be = 1.00
\i7 = 42 0^ = 27 fa = 1.00

Mv* = 51.17793

experimental runs
1) 51.19986
2) 51.28685
3) 51.23554
4) 51.31067
5) 51.28316

% error = (51.263216 - 51.17793) / 51.17793
= 0.17%

Appendix 12

n = 10

tu = 50 Gi2 = 4 fci = 1.00
112 = 40 o2

2 = 36 b2 = 1.00
|i3 = 45 a3

2 = 12 &3 = 1.00
IM = 43 CT42 = 17 fa = 1.00
(i5 = 47 G52 = 21 fc5 = 1.00
H6 = 41 G62 = 14 b6 = 0.03
(17 = 42 0^ = 33 b? = 1.00
Us = 49 as2 = 7 b8 = 1.00
H9 = 48 G92 = 11 b9 = 1.00

(j.10 = 46 Gio2 = 6 610 = 1.00

M/ = 48.92204

experimental runs
1) 48.92244
2) 49.30835
3) 49.02160
4) 48.92251
5) 48.93250

% error = (49.02148 - 48.92204) / 48.92204
= 0.20%

Appendix 12

